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We show how to derive a simple integrator for the Langevin equation and illustrate how it is possible to
check the accuracy of the obtained distribution on the fly, using the concept of effective energy introduced in
a recent paper �J. Chem. Phys. 126, 014101 �2007��. Our integrator leads to correct sampling also in the
difficult high-friction limit. We also show how these ideas can be applied in practical simulations, using a
Lennard-Jones crystal as a paradigmatic case.
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I. INTRODUCTION

Langevin dynamics was first introduced in molecular
simulations to calculate the properties of mesoscopic systems
�1�. Here a dissipative force and a noise were added to the
Hamilton equations to model a bath of lighter particles. The
formal justification for this model can be obtained using the
projection operator techniques �2,3�. However, it was soon
realized that Langevin dynamics can also be used as a ther-
mostat �4�, adding the dissipative forces and the noise to the
Hamiltonian dynamics to allow a molecular dynamics simu-
lation to explore an ensemble at a fixed temperature. Further-
more, it has been used to sample arbitrary distribution, for
instance in the case of numerical quantum chromodynamics
�5�.

Several algorithms have been proposed for the numerical
integration of the Langevin equation, see, among others,
Refs. �6–18�. Most of them were derived with the aim of
producing accurate trajectories, i.e., dynamical properties, up
to a given order. Because of that, they usually break down
when a high friction is applied, essentially when the veloci-
ties are varying too fast with respect to the chosen time step.
Moreover, their design is not focused on the correctness of
the ensemble generated. A notable exception is given by the
schemes derived in Ref. �17�, where the free parameters of
the algorithm are chosen so as to minimize the sampling
errors. However, none of the algorithms so far proposed offer
any way of checking the accuracy of the sampling during a
numerical simulation. This is at variance with the numerical
integration of Hamilton’s equations, where the conservation
of the total energy has been traditionally used to this end
�10,19�. The standard approach in molecular dynamics is
thus to choose the time step by monitoring the energy con-
servation in a few microcanonical runs, then to adopt the
same time step for the Langevin dynamics. To the best of our
knowledge, only in a recent paper �15� Scemama et al. have
shown how to correct exactly the discretization errors in the
Langevin dynamics in the context of variational Monte
Carlo, using a Metropolis procedure. However, the poor scal-
ing of these accept-reject algorithms with respect to the num-
ber of degrees of freedom prevents their application to global
moves in very large systems �19,20�.

In a recent paper �21� we introduced a constant-
temperature molecular-dynamics method. In Ref. �21� only
one variable, the total kinetic energy, was subject to stochas-
tic fluctuations and the response of the thermostat could be
modeled so as to have a minimal effect on the dynamics.
Here we apply some of the ideas developed in Ref. �21� to
Langevin dynamics, where all degrees of freedom can be
separately controlled and the time scale over which the ther-
mostat reacts is defined by the friction coefficient. When
used as a thermostat, Langevin dynamics can be more effi-
cient in difficult cases, but it is more disruptive of the dy-
namics. In an extension of Ref. �21�, we integrate Langevin
using a simple algorithm derived from a Trotter decomposi-
tion. The effective-energy drift allows the sampling error to
be controlled during a simulation, and can be used in a rig-
orous way to perform reweighting or accept-reject algo-
rithms, in a scheme that turns out to be similar to that dis-
cussed by Scemama et al. �15�. The advantage of our
formulation is that, for large systems, the effective energy
can be simply checked against long-term drifts, in the same
way as the total energy has traditionally been used to check
the accuracy of microcanonical molecular dynamics. We also
show the properties of the effective energy in model har-
monic oscillators and in a realistic Lennard-Jones crystal.

II. THEORY

A. Langevin dynamics

We consider a particle with mass m subject to a potential
energy U�q�. The generalization to multiple degrees of free-
dom is straightforward. The probability density for the ca-
nonical ensemble at an inverse temperature � is

P̄�p,q�dpdp � e−��p2/2m�e−�U�q�dpdp . �1�

The canonical ensemble can be sampled through the Lange-
vin dynamics

dp�t� = f„q�t�…dt − �p�t�dt +�2m�

�
dW�t� , �2a�*Electronic address: gbussi@ethz.ch
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dq�t� =
p�t�
m

dt , �2b�

where f�q�=− �U
�q is the deterministic force, � is the friction

coefficient, and dW�t� is a Wiener noise in the Itoh conven-
tion �22�, normalized as �dW�t�dW�t���=��t− t��. A descrip-
tion equivalent to the stochastic Eq. �2� can be formulated in
terms of the probability density, which evolves according to
the Fokker-Planck equation �22,23�

�P�p,q;t�
�t

= − L̂P�p,q;t� , �3�

where

L̂ = f�q�
�

�p
+

p

m

�

�q
− �� �

�p
p +

m

�

�2

�p2	 . �4�

The formal solution of Eq. �3� at a finite time step �t is

P�p,q;t + �t� = e−�tL̂P�p,q;t� , �5�

which, however, cannot be evaluated explicitly. Notice that

for Hamiltonian dynamics, �=0, the operator L̂ is anti-

Hermitian and the propagator e−�tL̂ is unitary. These proper-
ties hold only for a deterministic area-preserving dynamics.
They do not hold in a Langevin process.

B. A simple integrator

As was first recognized by Tuckerman et al. �24� and,
independently, by Sexton and Weingarten �25�, the Trotter
formula �26� allows an approximated propagator to be con-
structed as

e−�tL̂ 
 �
j=M

1

e−��t/2�L̂j�
k=1

M

e−��t/2�L̂k, �6�

where M is the number of stages in the integrator and � jL̂j

= L̂. Since in general the L̂j’s do not commute among them-
selves, the order in which the stages are applied is relevant,
and the splitting in Eq. �6� introduces some error into the

propagation. The key point here is that the stages e−��t/2�L̂j are
chosen so that they can be integrated analytically, and the
Trotter splitting is the only source of errors.

It is natural to write L̂ as a sum of three parts:

L̂ = L̂p + L̂q + L̂� �7�

which are defined as

L̂p = f�q�
�

�p
, �8a�

L̂q =
p

m

�

�q
, �8b�

L̂� = − �� �

�p
p +

m

�

�2

�p2	 . �8c�

Several choices are now available for the Trotter splitting.

We notice that the operators e−��t/2�L̂� and e−�tL̂pq leave the
stationary distribution in Eq. �1� unchanged:

e−��t/2�L̂�P̄ = P̄; e−�tL̂pqP̄ = P̄ . �9�

This is due to the fact that the canonical distribution is sta-

tionary not only with respect to L̂ but also with respect to

L̂pq= L̂p+ L̂q, which corresponds to Hamilton propagation,

and with respect to L̂�, which introduces the combined effect
of friction and noise. Thus even if the commutator

�L̂pq , L̂���0, the following splitting does not introduce sam-
pling errors,

e−�tL̂ 
 e−��t/2�L̂�e−�tL̂pqe−��t/2�L̂�, �10�

since it can be interpreted as a sequence of moves each of

which has the correct limiting distribution. The e−��t/2�L̂�

move provides ergodicity in the momenta subspace only,

while the e−�tL̂pq move mixes the momenta and positions
subspaces. An integrator designed to apply the propagator in
Eq. �10� would provide an approximate trajectory and an
exact sampling, independently of �t and �. The propagator

e−��t/2�L̂� can be integrated analytically. Unfortunately, the

propagator e−�tL̂pq cannot be integrated exactly and has to be
split further. We opt here for the simplest choice, which is the
same used to obtain the velocity Verlet algorithm:

e−�tL̂ 
 e−��t/2�L̂�e−��t/2�L̂pe−�tL̂qe−��t/2�L̂pe−��t/2�L̂�. �11�

In specific cases, different decompositions of L̂pq could be
adopted. For example, if the forces can be separated into
contributions varying on different time scales, a multiple-
time-step decomposition is expected to be more efficient
�24�.

Other possible choices for the Trotter splitting which are
substantially equivalent to Eq. �11� can be obtained, based on

the three operators L̂q, L̂p, and L̂�. It is worthwhile to notice

that in principle there is no need to split L̂p and L̂�, since

L̂p�= L̂p+ L̂� can be also evolved analytically. Ricci and Cic-
cotti �14� derived two integrators using splittings that, in our

notation, would read e−�tL̂
e−��t/2�L̂p�e−�tL̂qe−��t/2�L̂p� and

e−�tL̂
e−��t/2�L̂qe−�tL̂p�e−��t/2�L̂q. These decompositions in-
volve a single splitting and thus appear more accurate than
Eq. �11�. However, when ��t is negligible, they do not offer
any advantage, and when ��t is not negligible, they do not
sample the proper ensemble. This can be easily verified tak-
ing the limit ��t→�. On the other hand, in our scheme the
only ensemble violations arise from the fact that for a finite

�t the evolution of L̂pq is approximated. These violations are
independent of the choice of the friction. Even the infinite
friction limit can be taken safely, as shown in the Appendix.
Thus when the sampling quality is an issue, our scheme of-
fers significant advantages.
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The splitting in Eq. �11� leads to an explicit integration
scheme. In the derivation we use the analytical propagation

formula for L̂� which can be found in Ref. �23�. After some
manipulation, the integrator is written as

p�t+� = c1p�t� + c2R�t� , �12a�

q�t + �t� = q�t� +
p�t+�

m
�t +

f„q�t�…
m

�t2

2
, �12b�

p�t− + �t� = p�t+� +
f„q�t�… + f„q�t + �t�…

2
�t , �12c�

p�t + �t� = c1p�t− + �t� + c2R��t + �t� , �12d�

where R and R� are two independent Gaussian numbers and
the coefficients c1 and c2 are

c1 = e−���t/2�, �13a�

c2 =��1 − c1
2�

m

�
. �13b�

Equation �13b� fixes the weight of the rescaling factor c1 and
of the amplitude of the Gaussian number c2 in such a way
that c1p+c2R will be distributed in the same way as p. Thus
Eq. �13b� alone guarantees the correctness of the sampling.
On the other hand, Eq. �13a� gives the relation between the
friction � and the rescaling factor c1.

In Eq. �12�, the combination of the two inner stages is a
velocity Verlet step, and corresponds to the approximate

propagation of e−�tL̂pq. The first and last stages represent the
action of the thermostat, i.e., the exact propagation of

e−��/2�tL̂�. We denote as p�t+� and p�t−� the momenta imme-
diately after and immediately before the action of the ther-
mostat. We also observe that the first and last stages can be
merged as p�t++�t�=c1

2p�t−+�t�+c2
�c1

2+1R�t+�t� so that
one Gaussian random number per degree of freedom is re-
quired at each step. This allows the simulation to speed up
when the calculation of the deterministic forces is particu-
larly cheap and the generation of the Gaussian random num-
bers becomes computationally relevant. If one is interested in
the values of the momenta at time t, i.e., synchronized with
the positions, they can be reconstructed afterwards.

C. Control of sampling errors

We now use the concept of effective energy H̃ introduced
in Ref. �21� to control the accuracy of the sampling. For
clarity we repeat here some of the notions already presented
there.

Our goal is to generate a sequence of points xi= �pi ,qi� in
the phase-space, so that a time average can be used in place
of the ensemble average �10�. Usually, in molecular dynam-
ics simulations this sampling is approximate, due to the
finite-time-step errors. On the other hand, in a Monte Carlo
simulation the moves are accepted or refused in such a way
that the exact distribution is enforced. Here, we interpret a

stochastic molecular dynamics as a highly efficient Monte
Carlo where all the moves are accepted. We define M�xi+1

←xi�dxi+1 the distribution probability of the point xi+1 to be
chosen as the next point, given that the present point is xi.
We also define the conjugate point x*= �−p ,q�, which is ob-

tained by inverting the momentum, and satisfies P̄�x�
= P̄�x*�. If Eq. �2� was integrated exactly, then the detailed

balance �22� would be satisfied, i.e., M�xi+1←xi�P̄�xi�
=M�xi

*←xi+1
* �P̄�xi+1

* �. However, this is not true when a finite
time step is used. Thus, we introduce a weight wi associated
to the point xi, which evolves as

wi+1

wi
=

M�xi
* ← xi+1

* �P̄�xi+1�

M�xi+1 ← xi�P̄�xi�
. �14�

The same information can be expressed in terms of an effec-

tive energy, defined as H̃i=− 1
� ln wi, which evolves accord-

ing to

H̃i+1 − H̃i = −
1

�
ln�M�xi

* ← xi+1
* �

M�xi+1 ← xi�
	 + H�xi+1� − H�xi� .

�15�

We now proceed into an explicit derivation of the terms
needed.

In standard hybrid Monte Carlo, the trial moves are gen-
erated using an area-preserving scheme, so that M�xi

*

←xi+1
* �=M�xi+1←xi�. Thus the effective energy H̃ reduces to

the Hamiltonian H. However, the Langevin equation is ex-
plicitly non-area-preserving, and an additional contribution
due to phase-space compression has to be evaluated. We now
calculate it explicitly for the integrator in Eq. �12�. In Ref.
�21� we used the fact that the thermostat moves are designed
so as to satisfy detailed balance. We present here a more
general way of evaluating this contribution that can be
straightforwardly applied to other integrators.

We recall that the random numbers R and R� are drawn
from a Gaussian distribution, i.e.,

P�R,R��dRdR� =
1

2�
e−�R2/2�e−�R�2/2�dRdR�. �16�

We notice that given the starting point xi= �pi ,qi� and the
ending point xi+1= �pi+1 ,qi+1� the value of R and R� can be
determined solving Eqs. �12� with respect to R and R�:

R = �qi+1 − qi�
m

c2�t
−

f�qi��t

2c2
−

c1

c2
pi, �17a�

R� = − �qi+1 − qi�
c1m

c2�t
−

c1f�qi+1��t

2c2
+

1

c2
pi+1, �17b�

where we have identified the sequence index i with the time
t and the sequence index i+1 with the time t+�t. Now,
changing the variables from �R ,R�� to �qi+1 , pi+1� one obtains
the following expression for the transition probability:
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M��qi+1,pi+1� ← �qi,pi��

=
m

2�c2
2�t

exp−
1

2c2
2��qi+1 − qi�

m

�t
−

f�qi��t

2
− c1pi	2

−
1

2c2
2��qi+1 − qi�

mc1

�t
+

f�qi+1�c1�t

2
− pi+1	2� . �18�

At this stage we know the probability for the forward move
M��qi+1 , pi+1�← �qi , pi��. With a similar procedure we can
find the probability for the backward move, M��qi ,−pi�
← �qi+1 ,−pi+1��, and, with some further manipulation, the
contribution of the phase-space compression to the effective
energy:

−
1

�
ln�M�xi

* ← xi+1
* �

M�xi+1 ← xi�
	 = − � pi+1

2

2m
−

pi
2

2m
	 + �qi+1 − qi�

f i+1 + f i

2

+
�t2

8m
�f�qi+1�2 − f�qi�2� . �19�

For this derivation it is crucial that the change of variables
be well defined. Since we have two noise terms �R ,R�� and
two variables �qi+1 , pi+1�, we have to require the Jacobian of
the transformation to be different from zero. For integrators
using only one noise term, it is not obvious that, given the
forward trajectory, the backward trajectory is possible. If the
backward trajectory is possible, then the effective-energy
drift depends on the ratio between the forward and backward
probabilities and gives a quantitative measure of the viola-
tion of detailed balance. If the backward trajectory is not
possible, then the integrator cannot satisfy detailed balance.
As an example, the second integrator introduced by Ricci
and Ciccotti �14� cannot satisfy detailed balance, as was al-
ready pointed out by Scemama et al. �15�. On the other hand,
the modification described in Ref. �15� can satisfy detailed
balance. It is interesting that in Ref. �15� the authors are
using the usual formulation of detailed balance, which leads
to the need for an explicit inversion of the sign of the veloci-
ties. We use a more general formulation of detailed balance
�22� in which velocities are considered as odd variables and
their inversion after an accepted step is not required. One
could also object that the condition of detailed balance is not
strictly necessary �27�. However, it appears to us that de-
tailed balance is the only way to enforce or check a distribu-
tion in a local manner, i.e., using only information about the
present point xi, the next point xi+1, and their conjugated
points xi

* and xi+1
* .

Equations �15� and �19� can be combined, giving a final
expression for the effective-energy increment as

�H̃ = �q� f�qi� + f�qi+1�
2

	 + �U +
�t2

8m
��f2� . �20�

From Eq. �20� it is easy to see that when �t is small enough
the effective energy is approximately constant, since the first
and second terms tend to compensate each other and the
third term vanishes on the order of �t2. We also notice that
the third term in Eq. �20� is an exact differential. Thus it
contributes to the fluctuations of the effective energy but not
to its drift.

We notice that the increment of the effective energy in Eq.
�20� is exactly equal to the difference of the total energy
before and after the velocity Verlet step, as in the case of the
scaling procedure described in Ref. �21�. In fact, also here
we can think of our dynamics as composed of a combination

of two steps: one, described by the operator e−��t/2�L̂�, which
exactly satisfied detailed balance; the other, which is the ve-
locity Verlet step, is symplectic but does not exactly conserve
the energy. Only the violations arising from the latter are

accumulated into the effective energy. Thus in practice, H̃
can be calculated simply by summing the increments of the
total energy due to the Verlet, discarding the increments due
to the thermostat. Alternatively, it can be obtained by sub-
tracting from the total energy the sum of all its increments
due to the thermostat. The same procedure can be applied
directly also in the case of the Peters thermostat �28�, based

on dissipative particle dynamics �29�, where e−��t/2�L̂� is sub-
stituted by a rescaling of the relative velocity of neighboring
particles, the only condition being the fact that the rescalings
are performed in a way that analytically preserves the target
ensemble.

The effective energy can be calculated on the fly and,
aside from numerical truncation errors, it gives a quantitative
way to assess the accuracy of the calculation. In the spirit of
Ref. �30�, one can obtain exact ensemble averages with �A�
=�iwiA�xi� /�iwi. The variation of H̃ on segments of trajec-
tory can also be used in a hybrid Monte Carlo scheme �20�,
where the acceptance is calculated as min �1,e−���H̃��. In this
latter case, our scheme becomes similar to that presented by
Scemama et al. �15�. In a molecular dynamics context, the

effective energy H̃ is simply monitored during the simula-
tion. It may fluctuate, but it should not exhibit a large sys-
tematic drift.

III. EXAMPLES

A. Harmonic oscillator

It is instructive to study the properties of the integrator in
Eq. �12� when it is applied to a harmonic oscillator. We con-
sider an energy profile

U�q� =
1

2
m	2q2. �21�

We are interested in the time evolution of the effective en-

ergy H̃. It can be easily shown that for a quadratic potential
the first two terms in Eq. �20� cancel exactly, and only the
third term survives. Thus the integral over the trajectory is

not necessary and the effective energy H̃ is a state function

H̃�p,q� =
�t2

8
m	4q2 + C , �22�

where C is an arbitrary constant. The effective distribution
that will be sampled by the Langevin dynamics can be ob-
tained analytically and is
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P̄e�p,q� � e−��p2/2m�−��	2m/2��1−	2�t2/4�q2
. �23�

This solution can be normalized only if �t
2/	. For longer
time steps, the dynamics is unstable. Although the logarithm
of the distribution in Eq. �23� has an expression similar to
that of the so-called shadow Hamiltonian for the harmonic
oscillator �31,32�, our derivation of Eq. �23� is based on the
stationary distribution only and does not provide any infor-
mation on the effective trajectory.

Since H̃ is a state function, it will not exhibit drifts. Its
square fluctuations can be obtained analytically and are equal
to

�H̃2 =
1

2�2

1

�4/�	�t�2 − 1�2 . �24�

For a comparison, the fluctuations of the total energy H are

1/�2. Interestingly, the size of the fluctuations of H̃ depends
only on the ratio between the time step and the period of the
oscillator. It is completely independent of the value of the
friction.

The properties of a N-dimensional oscillator can be easily
obtained by recalling that, when the dynamics is projected on
the eigenmodes of the oscillator, the coordinates evolve in-
dependently of each other. Assuming a spectrum of N fre-

quencies 	i, the fluctuations of H̃ are

�H̃2 =
1

2�2�
i=1

N
1

�4/�	i�t�2 − 1�2 

�t4

32�2�
i=1

N

	i
4. �25�

The last approximation holds when �t is much smaller than
the period of the fastest mode. In this case, it is interesting to
note that to have rigorously the same accuracy, the time step
has to be chosen proportional to N−1/4.

B. Lennard-Jones crystal

In the harmonic oscillator the effective energy reduces to
a state function and does not exhibit drifts. In this sense, the
harmonic oscillator cannot be considered as a prototype of a
real molecular system. In this subsection we discuss the ap-
plication of Langevin sampling and of effective-energy
monitoring in the context of atomistic simulations. We use as
a realistic test case a Lennard-Jones solid, close to the melt-
ing point. We express all the quantities in reduced units �10�.
We simulate a cubic box with side 19.06 containing 6912
particles arranged according to an fcc lattice, which corre-
sponds to a density �=0.998. We set the temperature to T
=0.667. We calculate the forces using a distance cutoff of 3.
We compare simulations performed using different values for
the time step �t and the friction �. All the simulations were
performed using a modified version of the DL POLY code
�33,34�.

In Fig. 1 we show a time series for the effective energy H̃
per particle. The effective energy exhibits a regular drift due
to the finiteness of the integration time step, similarly to the
total energy in a microcanonical simulation. The drift is
strongly dependent on the time step, and is only slightly
affected by the choice of the friction. In Fig. 2 we show the

values obtained for the average potential energy per particle
and the average pressure for different choices of � and �t,
obtained from runs of length 2500 time units. The values are
again rather independent of the choice of �. This is remark-
able, considering that we are changing the friction over three
orders of magnitude and that we are working also in regimes
where ��t is not negligible. This indicates that the errors are
essentially coming from the integration of the Hamilton
equations and not from the friction itself. In the third panel
we show the average slope of the effective energy per par-
ticle, obtained with a linear fitting. The slope is again
strongly sensitive to the time step and only slightly depen-
dent on the friction.

To stress the fact that the effective-energy slope is a cor-
rect indicator of the integration errors, we show the same
data in Fig. 3. There, we plot the value of the observable
quantity as a function of the slope in the effective-energy
drift. The two quantities are highly correlated, indicating that
the effective-energy slope gives a realistic estimate of the
errors due to the finite time step.

Up to now we have discussed the sampling accuracy,
which measures the systematic errors due to the finite-time-
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FIG. 1. �Color online� Effective-energy drifts for different
choices of the friction coefficient, respectively, �=1 �a�, �=5 �b�,
and �=20 �c�, and different choices of the time step �t, as indi-
cated. The effective energy drifts linearly, and its slope is strongly
dependent on the time step. All the quantities are in Lennard-Jones
reduced units.
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FIG. 2. Average values of �a� the potential energy per particle,
�b� the instantaneous pressure, and �c� the slope of the effective
energy per particle, plotted as functions of the friction �. The cal-
culations are performed with different time steps: �t=0.0025 ���,
�t=0.005 ���, �t=0.01 ���, �t=0.015 ���, and �t=0.02 ���. All
the quantities are in Lennard-Jones reduced units.
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step integration. In practical applications also the sampling
efficiency, which measures the statistical error due to the
finite length of the simulation, is relevant. The sampling ef-
ficiency depends on which specific observable one wishes to
calculate. In particular, to optimize the efficiency, the auto-
correlation time of the quantity of interest has to be as short
as possible �19�. In Fig. 4 we show the autocorrelation func-
tion of the total potential energy and of the instantaneous
pressure, for different choices of the friction �, using a time
step �t=0.0025. For both the considered quantities, the op-
timal choice for � is 20. This rule is far from general, but
illustrates clearly the fact that too high a friction can spoil the
quality of the sampling since it hinders particle motion.

IV. CONCLUSION

In conclusion, we have studied the properties of a very
simple integrator for the Langevin equation, derived employ-
ing the Trotter scheme commonly use in the derivation of
multiple-time-step integrators. Moreover, we have used the
concept of effective energy, introduced in a previous paper,
to assess on the fly the accuracy of this integrator in practical
cases, ranging from simple one-dimensional oscillators to a
Lennard-Jones crystal. Finally, we have shown how to moni-
tor the effective energy in practice. Our formalism can be
easily generalized to the description of other stochastic dy-
namics, such as dissipative-particle dynamics �29�.

APPENDIX: HIGH FRICTION LIMIT

When �→� the integrator in Eq. �12� can be rewritten in
terms of the position only:

q�t + �t� = q�t� + f„q�t�…
�t2

2m
+ �t� 1

�m
R . �A1�

Now, defining D= �t
2�m this equation becomes

q�t + �t� = q�t� + D�f„q�t�…�t + �2D�tR �A2�

which is exactly the Euler integrator for the overdamped
Langevin equation

dq�t� = D�f„q�t�…dt + �2DdW�t� . �A3�

It is worth noting that the increment of H̃ as defined in Eq.
�20� does not depend on �, and is still valid. In terms of D it
is

�H̃ = �q� f„q�t�… + f„q�t + �t�…
2

	 + �U +
�D�t

4
��f2�

�A4�

which is exactly the one used to calculate the acceptance in
the smart Monte Carlo technique �35�.
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